Testing chemical carcinogenicity by using a transcriptomics HepaRG-based model?
نویسندگان
چکیده
The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcinogen-specific gene signatures. Here the performance of its gene classifier, derived from exposure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the gene and the pathway level by using independent biostatistical approaches showed a distinct separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 88 % correct prediction). The most characteristic pathway responding to genotoxic exposure was DNA damage. Interlaboratory reproducibility was assessed by blindly testing of three compounds, from the set of 30 compounds, by three independent laboratories. Subsequent classification of these compounds resulted in correct prediction of the genotoxicants. As expected, results on the non-genotoxic carcinogens and the non-carcinogens were less predictive. In conclusion, the combination of transcriptomics with the HepaRG in vitro cell model provides a potential weight of evidence approach for the evaluation of the genotoxic potential of chemical substances.
منابع مشابه
High Content Imaging and Analysis Enable Quantitative In Situ Assessment of CYP3A4 Using Cryopreserved Differentiated HepaRG Cells
High-throughput imaging-based hepatotoxicity studies capable of analyzing individual cells in situ hold enormous promise for drug safety testing but are frequently limited by a lack of sufficient metabolically competent human cells. This study examined cryopreserved HepaRG cells, a human liver cell line which differentiates into both hepatocytes and biliary epithelial cells, to determine if the...
متن کاملAdverse outcome pathway-based screening strategies for an animal-free safety assessment of chemicals.
Currently, the assessment of risk to human health from exposure to manufactured chemicals is mainly based on experiments performed on living animals (in vivo). Substantial efforts are being undertaken to develop alternative solutions to in vivo toxicity testing. This new paradigm, based on the Mode-of-Action (MoA) framework, postulates that any adverse human health effect caused by exposure to ...
متن کاملHuman Hepatic HepaRG Cells Maintain an Organotypic Phenotype with High Intrinsic CYP450 Activity/Metabolism and Significantly Outperform Standard HepG2/C3A Cells for Pharmaceutical and Therapeutic Applications
Conventional in vitro human hepatic models for drug testing are based on the use of standard cell lines derived from hepatomas or primary human hepatocytes (PHHs). Limited availability, interdonor functional variability and early phenotypic alterations in PHHs restrict their use, whilst standard cell lines such as HepG2 lack a substantial and variable set of liver-specific functions such as CYP...
متن کاملRegulatory requirements and ICH guidelines on carcinogenicity testing of pharmaceuticals: A review on current status
Carcinogenicity studies are conducted in laboratory animals to evaluate the carcinogenic potential of pharmaceuticals. In drug discovery, rodent carcinogenicity studies are conducted with an objective to explore the mechanism of carcinogenesis and the ultimate risk to humans. Many problems are encountered in carrying out and interpretation of results for carcinogenicity bioassay. A number of fa...
متن کاملHepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity.
UNLABELLED Acetaminophen (APAP) overdose is the leading cause of acute liver failure in Western countries. In the last four decades much progress has been made in our understanding of APAP-induced liver injury through rodent studies. However, some differences exist in the time course of injury between rodents and humans. To study the mechanism of APAP hepatotoxicity in humans, a human-relevant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014